

5V Full Bridge Driver for High Integration,

High Efficiency and Low Cost Wireless

DEC. 23, 2015 Version 1.0

Generalplus Technology Inc. reserves the right to change this documentation without prior notice. Information provided by Generalplus Technology Inc. is believed to be accurate and reliable. However, Generalplus Technology Inc. makes no warranty for any errors which may appear in this document. Contact Generalplus Technology Inc. to obtain the latest version of device specifications before placing your order. No responsibility is assumed by Generalplus Technology Inc. for any infringement of patent or other rights of third parties which may result from its use. In addition, Generalplus products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of Generalplus.

Table of Contents

PAGE

1.	GENERAL DESCRIPTION
2.	FEATURES
3.	BLOCK DIAGRAM
4.	SIGNAL DESCRIPTIONS
	4.1. PIN MAP
5.	ELECTRICAL SPECIFICATIONS
	5.1. Absolute Maximum Ratings
	5.2. ELECTRICAL CHARACTERISTICS
	APPLICATION CIRCUIT7
7.	LAYOUT EXAMPLES
	PACKAGE / ORDERING INFORMATION
	8.1. ORDERING INFORMATION
	8.2. PACKAGE INFORMATION
9.	DISCLAIMER
10	REVISION HISTORY

1A Ultra-Low Dropout Linear Regulator

1. GENERAL DESCRIPTION

GPMD5130A is a highly integrated 5V full bridge power IC optimized for wireless power transmitter solution. It is works with a transmitter controller to create a low cost and high performance wireless power transmitter compliant with WPC 1.2 or for any custom transmitter solutions. The device integrates all critical functions, such as high efficiency power FETs, low EMI FET driver, boost strap circuit, 2.5V LDO and current measurement. The proprietary current measurement circuit provides accurate current reading for FOD (Foreign Object Detection) power measurement and pulse-by-pulse signal for in-band communication. It eliminates the current sense resistor and amplifier circuit, and thus saves cost and power losses.

The IC also includes protection functions such as input under-voltage lockout, short circuit protection, and thermal shutdown. These provisions further enhance the reliability of the system solution.

The device is housed in a thermally enhanced 16 pin 3mmx3mm QFN package

2. FEATURES

- Input Voltage: 4.0V to 5.5V
- Integrated Full Bridge FETs and
- Drivers
- 20mohm Rds(on) of Each FET for High Efficiency
- FET Driver Optimized for Low EMI
- Integrated 2.5V LDO to Bias External Circuit
- High Accuracy, High Speed, Lossless Current Measurement
- Input Under-Voltage Lockout
- Short-Circuit Protection
- Thermal shutdown
- 3mm x 3mm Flip Chip QFN Package

3. BLOCK DIAGRAM

4. SIGNAL DESCRIPTIONS

NAME PIN No. Type			Description
VREF	1	0	This pin is the output of the 2.5V LDO
AVIN	2	I	Signal power input pin
BST2	3	I/O	Positive supply rail for the high-side gate driver of Q3 as shown in the Block Diagram . Connect a ceramic capacitor between the BST2 and SW2 pins
VIN	4,9,17,21	I	Power input pin. This pin connects to the input rail of the full bridge.
PGND	5,8,18,22	-	Power ground pin. This pin connects to the ground of the full bridge.
SW2	6,19	0	Switch node of the half-bridge MOSFETs Q3 and Q4, as shown in the Block Diagram .
SW1	7,20	0	Switch node of the half-bridge MOSFETs Q1 and Q2, as shown in the Block Diagram .
BST1	10	I/O	Positive supply rail for the high-side gate driver of Q1. Connect a ceramic capacitor between the BST1 and SW1 pins
MODE	11	Ι	The logic of the pin programs the PWM1 and PWM2 function. See Application Description for details. MODE logic is detected at power up, and will be reset at next power on set.
EN	12	I	Enable input of the IC. Pull the pin low or keep it floating to disable the IC and open all the FETs. Logic high enables the IC.
PWM1	13	I	PWM logic input to the MOSFET Q1 and Q2 as shown in the Block Diagram . Logic high turns on the high side FET, and turns off the low side FET. Logic low turns on the low side FET and turns off the high side FET. When PWM input is in the tri-state mode, both Q1 and Q2 are turned off. The switching slew rate and dead-time are controlled by the device.
PWM2	PWM2 14 FET and		PWM logic input to the MOSFET Q3 and Q4 as shown in the Block Diagram . Logic high turns on the high side FET, and turns off the low side FET. Logic low turns on the low side FET and turns off the high side FET. When PWM input is in the tri-state mode, both Q3 and Q4 are turned off. The switching slew rate and dead-time are controlled by the device.
AGND	15	-	Analog ground of the IC
ISNS 16		0	Current sense output. When connected with an external resistor, the voltage at the pin represents the input current.

4.1. PIN Map

16-Pin QFN Top View

5. ELECTRICAL SPECIFICATIONS

5.1. Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
SW1, SW2	Switch node of the half-bridge MOSFETs Voltage.	-0.3 to 12	V
PWM1,PWM2, VREF,VIN, AVIN,EN, MODE,ISNS	Other General Pin Voltage.	-0.3 to 7	V
BST1	BST1 and SW1 pin Voltage	-0.3 to 7+SW1	V
BST2	BST2 and SW2 pin Voltage	-0.3 to 7+SW1	V
Tstg	Storage Temperature	-55 to +150	°C
TJ	Operating junction Temperature	-40 to 125	°C

5.2. Electrical Characteristics

(VIN=AVIN=5V, Fsw=200KHz, Tj=-40 $^\circ\!C$ to 125 $^\circ\!C$ (unless otherwise noted))

Cumphial	Deverseter	Test Canditions	GPMD5130A			L lucit
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
INPUT		1				
	Under voltage lock out threshold		3.3	3.6	3.8	V
	Under voltage lock out nysteresis voltage	AVIN ramps down	-	400	-	mV
	Input operating current (Ivin+Iavin)	No switching, EN=1	-	3	-	mA
	nput shutdown current (Ivɪn+Iavɪn)	Tj=-40 ℃ to 85 ℃, EN=0	-		1	uA
POWER DEVIC	CES and DRIVERS					
RDS(on)	FET on resistance		-	20	-	mohm
ISW_LEAK	SW pin leakage current	Vsw=5V and VIN floating or Vsw=0V and VIN=5V	-1	-	1	uA
VBST_FW	Bootstrap forward voltage		-	-	500	mV
IBST_LEAK E	Boot leakage current	VBST-VIN=5V	-	-	2	uA
		1	1	1		
,	PWM logic high	Input rising	2.65	-	-	V
VL F	PWM logic low	Input falling	-	-	0.6	V
	Tri state voltage	Input rising and falling	1.3	-	2	V
LACT	Tri state activation		-	100	-	ns
VEH, VMODEH	EN pin and MODE pin nigh	Input rising	2.65	-	-	V
VEL, VMODEL	EN pin and MODE pin ow	Input falling	-	-	0.6	V
Ірwм Б	PWM pin input bias current	VPWM=VIN, VPWM=GND	-	15	-	uA
Ren B	Enable pin input impedance	Pull down to GND	-	800	-	Kohm
REFERENCE C	DUTPUT		•	•		
	2.5V reference voltage	Different temp, line and load.	-2%	2.5	+2%	V
	Reference voltage maximum supply current		10	-		mA
PROTECTION	S	•	·	•		·
TOTP	Over temperature protection point	Temp rising	-	155	-	°C
IOIP_HYS I	Over temperature protection nysteresis	Temp rising and falling	-	30	-	°C
ISC A	High side short circuit protection point		6	8	10	A
Tsc (OC protection time out period		10	20	30	ms
Current Sense						

Ksns	current amplification factor, Ivin/ Isns	Ivin=0.8A and Ivin=1.6A	6762	6900	7038	
loffoot	Current amplification offset, Isns *Ksns -Ivin	Ivin=0.8A and Ivin=1.6A	-14.4	-	14.4	mA

6. APPLICATION CIRCUIT

7. LAYOUT EXAMPLES

© Generalplus Technology Inc. Proprietary & Confidential Bottom layer view

C7

8. PACKAGE / ORDERING INFORMATION

8.1. Ordering Information

Product Number	Package Type
GPMD5130A	QFN16

8.2. Package Information

Bottom view

Top view

Side view

	Dimensions in Millimeters			Dimensions in Inches		
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.
A	0.70	0.75	0.80	0.028	0.030	0.031
A1	0.004	0.021	0.046	0.000	0.001	0.002
A3	0.110 REF.			0.004 REF.		
D	0.29	0.30	0.31	0.114	0.118	0.122
D1	0.15	0.25	0.35	0.006	0.01	0.014
E	2.9	3.0	3.1	0.114	0.118	0.122
E1	0.248	0.348	0.448	0.01	0.014	0.018

© Generalplus Technology Inc. Proprietary & Confidential

D2	0.041	0.141	0.241	0.002	0.0055	0.009
E2	0.993	1.093	1.193	0.039	0.043	0.047
E3	0.309	0.409	0.509	0.012	0.016	0.02
b	0.2	0.25	0.3	0.08	0.1	0.012
b1	0.13	0.18	0.23	0.05	0.07	0.09
е	0.5 TYP			0.02 TYP		
L	0.3	0.4	0.5	0.012	0.016	0.02
k		0.399R	EF		0.016RE	F
k1		0.220REF			0.009RE	F
k2	0.250REF				0.010RE	F
k3	0.210REF				0.008RE	F

9. DISCLAIMER

The information appearing in this publication is believed to be accurate.

Integrated circuits sold by Generalplus Technology are covered by the warranty and patent indemnification provisions stipulated in the terms of sale only. GENERALPLUS makes no warranty, express, statutory implied or by description regarding the information in this publication or regarding the freedom of the described chip(s) from patent infringement. FURTHERMORE, GENERALPLUS MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. GENERALPLUS reserves the right to halt production or alter the specifications and prices at any time without notice. Accordingly, the reader is cautioned to verify that the data sheets and other information in this publications involving unusual environmental or reliability requirements, e.g. military equipment or medical life support equipment, are specifically not recommended without additional processing by GENERALPLUS for such applications. Please note that application circuits illustrated in this document are for reference purposes only.

10. REVISION HISTORY

Date	Revision #	Description			
JUNE. 7, 2016	1.0	Original			